
Hello Kooper
How Structure Enables Creativity in AI Systems

We built an AI storytelling system for children and discovered something

unexpected: the right constraints don't limit creativity—they enhance it.

Through observing 35 users interact with our system, we formed a

hypothesis that challenges conventional thinking about AI alignment.

What We'll Explore:

How observing real user behavior led us to discover that moderate
constraints (~65% scaffolding) might optimize creative output, not restrict it.

35
Users Observed

66%
Completion Rate

1
Hypothesis Formed

📖
AI Storytelling Interface

Example: User writing "Alice having tea and pizza with a dragon"
with scaffolded prompts and creative suggestions

Our AI storytelling system in action: scaffolded prompts guide creativity while maintaining
user agency and safety

The Mad Hatter's Tea Party Network

Tuesday - Emma's Original Story

1
Total Stories

0
Children Upset

0%
Abandon Rate Increase

0
Parent Complaints

Emma's
Original

Tuesday
Alice Tea Party

Wednesday
5 Remixes

Thursday
47 Remixes

Friday
Angry Hatter!

The Mad Hatter's Tea Party Network

Wednesday - First 5 Remixes Emerge

6
Total Stories

0
Children Upset

0%
Abandon Rate Increase

0
Parent Complaints

Emma's
Original

V2

V3

V4

V5

V6

Tuesday
Alice Tea Party

Wednesday
5 Remixes

Thursday
47 Remixes

Friday
Angry Hatter!

The Mad Hatter's Tea Party Network

Thursday - Viral Explosion to 47 Remixes

47
Total Stories

0
Children Upset

5%
Abandon Rate Increase

0
Parent Complaints

Emma's
Original

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15

V16

V17

V18

V19

V20

V21

V22

V23
V24

V25

V26

V27

V28

V29

V30

V31

V32

V33 V34 V35
Tuesday

Alice Tea Party
Wednesday
5 Remixes

Thursday
47 Remixes

Friday
Angry Hatter!

The Mad Hatter's Tea Party Network

Friday - The Angry Hatter Appears!

47
Total Remixes

3
Children Upset

27%
Abandon Rate Increase

2
Parent Complaints

Original Story Safe Remix Problem Remix

Emma's
Original

V2

V3

V4

V5

V6

V7

V8

V9

V10
V11

V12

V13

V14

V15

V16

V17

V18

V19

V20

Angry
Hatter

Dark
Tea

Scary
Alice

Mean
Queen

Tuesday
Alice Tea Party

Wednesday
5 Remixes

Thursday
47 Remixes

Friday
Angry Hatter!

The Fundamental Challenge
Three forces every AI system must balance

This reveals the central challenge of generative AI:

The Impossible Choice

CREATIVITY
"Make it surprising

and delightful"

🎨

SAFETY
"Don't harm or upset

users"

🛡️

SCALE
"Work for millions of

interactions"

📈

Every approach forces you to sacrifice one for the other two. Safe systems are boring. Creative systems are risky. Scalable systems are generic.

We needed all three. But how?

AI

Three-Layer Defense Architecture

🛡️ Layer 1: Input Shields

Filter and transform user inputs before they reach the AI model. Age-adaptive
thresholds ensure appropriate content.

BERT toxicity classifier • Keyword filtering • Context analysis

🏗️ Layer 2: Generation Scaffolding

Structure AI generation with safety constraints while preserving creativity through
smart prompt templates.

Dynamic templates • Genre detection • Emotional trajectory tracking

✅ Layer 3: Output Validation

Multi-dimensional safety checking with behavioral feedback integration before
content reaches users.

Content + image safety • Structure validation • Emotional impact assessment

Input Shield Implementation
🛡️ Input Shield Implementation

class InputShield:

 def __init__(self):

 self.keyword_blocker = SafetyKeywords()

 self.toxicity_classifier = ToxicityBERT(threshold=0.3)

 self.context_analyzer = ContextualSafety()

 def filter_prompt(self, user_input, age_group):

 # Block obvious red flags

 if self.keyword_blocker.contains_unsafe(user_input):

 return self.redirect_to_safe_alternative(user_input)

 # Age-adaptive toxicity scoring

 toxicity_score = self.toxicity_classifier.predict(user_input)

 age_thresholds = {

 '6-7': 0.1, # Very strict

 '8-10': 0.3, # Moderate

 '11-12': 0.5 # Allow mild conflict

 }

 if toxicity_score > age_thresholds[age_group]:

 return self.gentle_redirect(user_input)

 # Wrap in safety scaffold

 scaffold_result = self.wrap_in_safety_scaffold(user_input)

 # Log input processing for behavioral analysis

 self.behavioral_tracker.log_input_processing(

 original_input=user_input,

 processed_input=scaffold_result,

 age_group=age_group,

 safety_adjustments=toxicity_score > age_thresholds[age_group]

)

 return scaffold_result

Three-Layer Defense Architecture

🛡️ Layer 1: Input Shields

Filter and transform user inputs before they reach the AI model. Age-adaptive
thresholds ensure appropriate content.

BERT toxicity classifier • Keyword filtering • Context analysis

🏗️ Layer 2: Generation Scaffolding

Structure AI generation with safety constraints while preserving creativity through
smart prompt templates.

Dynamic templates • Genre detection • Emotional trajectory tracking

✅ Layer 3: Output Validation

Multi-dimensional safety checking with behavioral feedback integration before
content reaches users.

Content + image safety • Structure validation • Emotional impact assessment

Generation Scaffolding Code
🏗️ Safety Scaffold System

class SafetyScaffold:

 def build_prompt(self, user_intent, story_context, age_group):

 template = """

 You are a warm, encouraging storyteller helping a {age_group}

 child create a {genre} story.

 SAFETY CONSTRAINTS:

 - Keep content {safety_level}

 - No scary, violent, or sad themes

 - Focus on friendship, problem-solving, discovery

 - Use positive, uplifting language

 USER REQUEST: {user_intent}

 Generate exactly one story scene as JSON:

 {{

 "scene_title": "...",

 "setting": "...",

 "action": "...",

 "dialogue": "...",

 "scene_image_prompt": "child-friendly illustration..."

 }}

 """

 return template.format(

 age_group=age_group,

 genre=self.detect_genre(story_context),

 safety_level=self.safety_levels[age_group],

 user_intent=user_intent

)

 def optimize_templates_from_behavior(self, behavioral_feedback):

 """Continuously improve templates based on user behavior"""

 for template_id, performance in behavioral_feedback.items():

 if performance['completion_rate'] > 0.85:

 self.promote template(template id)

Three-Layer Defense Architecture

🛡️ Layer 1: Input Shields

Filter and transform user inputs before they reach the AI model. Age-adaptive
thresholds ensure appropriate content.

BERT toxicity classifier • Keyword filtering • Context analysis

🏗️ Layer 2: Generation Scaffolding

Structure AI generation with safety constraints while preserving creativity through
smart prompt templates.

Dynamic templates • Genre detection • Emotional trajectory tracking

✅ Layer 3: Output Validation

Multi-dimensional safety checking with behavioral feedback integration before
content reaches users.

Content + image safety • Structure validation • Emotional impact assessment

Output Validation Pipeline
✅ Output Validation Pipeline

class OutputValidator:

 def validate_generation(self, generated_content, target_age):

 validation_results = {

 'content_safety': self.check_content_safety(

 generated_content, target_age

),

 'image_safety': self.check_image_safety(

 generated_content.get('scene_image_prompt')

),

 'emotional_appropriateness': self.check_emotional_impact(

 generated_content, target_age

),

 'structural_validity': self.check_story_structure(

 generated_content

)

 }

 # Multi-dimensional scoring

 safety_score = self.compute_composite_score(validation_results)

 if safety_score < self.approval_threshold:

 return self.generate_safe_alternative(generated_content)

 # Feed to behavioral tracking system

 self.behavioral_tracker.log_generation(

 content=generated_content,

 safety_score=safety_score,

 user_context=target_age

)

 return generated_content

 def check_emotional_impact(self, content, target_age):

 """Novel emotional safety checker"""

 emotional_markers = self.extract_emotional_content(content)

Early Behavioral Patterns (N=35)

~2x
Rough Engagement

? vs what baseline

0/35
Safety Issues

Good so far (tiny sample)

?%
Constraint Level

Hard to measure

What We're Actually Tracking (Roughly)

Did they finish the story? Yes/No

Did they keep editing? Yes/No

Time spent Minutes

Came back later? Yes/No

Said they liked it Thumbs up

Any complaints None yet

⚠️ Small Sample Alert

What We Can Actually Track
📊 Actual Data Collection & Analysis (N=35)

import pandas as pd

from datetime import datetime

class UserSessionTracker:

 def __init__(self):

 self.sessions = []

 def log_session(self, user_id, session_data):

 """Track actual user session data"""

 session = {

 'user_id': user_id,

 'start_time': session_data['start_time'],

 'end_time': session_data.get('end_time'),

 'story_completed': session_data.get('completed', False),

 'word_count': len(session_data.get('story_text', '').split()),

 'edit_count': session_data.get('edits', 0),

 'session_duration_min': session_data.get('duration_seconds', 0)

 }

 self.sessions.append(session)

 def calculate_completion_stats(self):

 """Calculate basic completion statistics"""

 df = pd.DataFrame(self.sessions)

 total_users = len(df['user_id'].unique())

 completed_stories = df['story_completed'].sum()

 completion_rate = completed_stories / total_users

 avg_session_time = df['session_duration_min'].mean()

 avg_word_count = df[df['story_completed']]['word_count'].mean()

 return {

 'total_users': total_users,

 'completed_stories': int(completed_stories),

 'completion_rate': completion_rate,

 'avg session minutes': round(avg session time, 1),

23/35
Stories Completed

~66% rate (small sample)

Early Behavioral Patterns (N=35)

23/35
Stories Completed

~66% rate (small sample)

0/35
Safety Issues

Good so far (tiny sample)

?%
Constraint Level

Hard to measure

Engagement Indicators We Can Track

Average session time ~18 min

Users who edited stories 28/35

Users who came back 12/35

Stories shared 6 total

Positive feedback 19/35

User complaints 0

⚠️ "Engagement" Is Mostly Guesswork

Rough Engagement Tracking
🎯 User Engagement Analysis (N=35)

import pandas as pd

import numpy as np

class EngagementAnalyzer:

 def __init__(self, session_data):

 self.df = pd.DataFrame(session_data)

 def analyze_engagement_patterns(self):

 """Analyze what engagement looks like in our data"""

 # Basic engagement indicators we can measure

 engagement_metrics = {

 'users_who_edited': (self.df['edit_count'] > 0).sum(),

 'users_who_finished': self.df['story_completed'].sum(),

 'users_who_returned': (self.df['return_sessions'] > 0).sum(),

 'avg_session_minutes': self.df['session_duration_min'].mean(),

 'total_edits_made': self.df['edit_count'].sum(),

 'stories_shared': self.df['shared_story'].sum()

 }

 # Simple engagement scoring

 self.df['engagement_score'] = (

 (self.df['edit_count'] > 0).astype(int) * 0.3 + # Did they edit

 self.df['story_completed'].astype(int) * 0.4 + # Did they fini

 (self.df['session_duration_min'] > 15).astype(int) * 0.2 + # Lo

 (self.df['return_sessions'] > 0).astype(int) * 0.1 # Did they

)

 high_engagement = (self.df['engagement_score'] > 0.6).sum()

 return {

 'total_users': len(self.df),

 'high_engagement_users': high_engagement,

 'engagement_rate': high_engagement / len(self.df),

 'raw_metrics': engagement_metrics

 }

~1.8x
Time Spent (rough)

vs unknown baseline

Early Behavioral Patterns (N=35)

23/35
Stories Completed

~66% rate (small sample)

~1.8x
Time Spent (rough)

vs unknown baseline

?%
Constraint Level

Hard to measure

Safety Checks We Actually Do

Automated content flags 0 triggered

User reported issues 0 reports

Parent complaints 0 so far

Abrupt session endings 2 noted

Manual story reviews 10 sampled

Known issue patterns None found

✅ Safety Looking Good (So Far)

Basic Safety Monitoring
🛡️ Basic Safety Monitoring (N=35)

import re

import pandas as pd

from collections import Counter

class SafetyMonitor:

 def __init__(self):

 self.safety_flags = []

 self.user_reports = []

 def check_story_content(self, story_text, user_id):

 """Basic content safety checks"""

 flags = []

 # Simple keyword filtering

 concerning_words = ['violence', 'scary', 'hurt', 'blood', 'death', '

 story_lower = story_text.lower()

 for word in concerning_words:

 if word in story_lower:

 flags.append({

 'user_id': user_id,

 'flag_type': 'keyword',

 'keyword': word,

 'severity': 'low'

 })

 # Check for excessive repetition (might indicate stuck generation)

 words = story_text.split()

 if len(words) > 10:

 word_counts = Counter(words)

 most_common = word_counts.most_common(1)[0]

 if most_common[1] > len(words) * 0.3: # >30% repetition

 flags.append({

 'user_id': user_id,

 'flag_type': 'repetition',

 'repeated word': most common[0],

0/35
Safety Issues

Good so far (tiny sample)

Early Behavioral Patterns (N=35)

23/35
Stories Completed

~66% rate (small sample)

~1.8x
Time Spent (rough)

vs unknown baseline

0/35
Safety Issues

Good so far (tiny sample)

Patterns That Led to Constraint Hypothesis

Current system completion rate 23/35

User engagement with scaffolding 28/35

Session duration consistency ~18 min avg

Safety maintained 0 issues

User satisfaction signals 12/35

System constraint level estimate ~60-70%

💡 Pattern Recognition Led to Discovery

Pattern Recognition Process
💡 How We Discovered the Constraint Hypothesis (N=35)

class ConstraintPatternRecognition:

 def __init__(self):

 self.sample_size = 35

 self.system_type = "scaffolded_prompts"

 self.observation_period = "3 weeks"

 def recognize_constraint_patterns(self, user_data):

 """How observing current system led to constraint hypothesis"""

 # Current system performance

 current_performance = {

 'completion_rate': 23/35, # ~66%

 'user_engagement': 28/35, # Most users actively worked

 'session_duration': 18, # minutes average

 'safety_maintained': True, # 0 incidents

 'estimated_constraint_level': 0.65 # Based on prompt analysis

 }

 # Pattern recognition process

 insights_developed = {

 'current_system_works_well': True,

 'users_not_overwhelmed_by_structure': True,

 'users_not_lost_without_guidance': True,

 'performance_suggests_sweet_spot': True,

 'constraint_level_seems_optimal': "Hypothesis formed"

 }

 # The discovery moment

 constraint_hypothesis = {

 'observation': "Current ~65% constraint level shows strong perfo

 'insight': "Maybe there's an optimal constraint zone?",

 'hypothesis': "Creative performance peaks at moderate constraint

 'evidence': current_performance,

 'next_step': "Test other constraint levels to validate"

 }

📈
Pattern Recognition

Led to constraint hypothesis

System Observations (N=35)

Interesting Patterns Observed
Current system shows promising user behavior - worth investigating further

Early Experimentation
📊 Setting Up User Observation Study (N=35)

import pandas as pd

class UserObservationStudy:

 def __init__(self):

 self.target_sample = 35

 self.current_system = 'scaffolded_prompts'

 def setup_data_collection(self):

 """Set up tracking for 35 users"""

 user_schema = {

 'user_id': 'string',

 'story_completed': 'boolean',

 'edit_count': 'integer',

 # ... more fields

 }

 current_prompt = """You're helping a curious child create a magical sto

 Write about a unicorn who discovers something unexpected..."""

 return {'schema': user_schema, 'prompt': current_prompt}

 def initialize_study(self):

 """Create study database"""

 columns = ['user_id', 'story_completed', 'edit_count']

 study_df = pd.DataFrame(columns=columns)

 # ... more setup

 return study_df

Initialize observational study

study = UserObservationStudy()

df = study.initialize_study()

print("Ready to observe 35 users with current system")

Phase 1 setup: Observational study to track 35 users interacting with current scaffolded prompt system.

📊
Phase 1: Initial Deployment - 35 users

Current system with scaffolded prompts: "You're helping a curious child create a magical
story! Write about a unicorn who discovers something unexpected..."

Early
Observations

0
Issues

Good
Engagement

📈
Phase 2: Pattern Recognition

Observing user behavior patterns, completion rates, engagement signals across continued
usage

23/35
Total Finished

0
Issues

~18min
Avg Time

🔬
Phase 3: Hypothesis Formation

"Users seem to respond well to structured prompts. Maybe there's a constraint sweet spot
worth testing?"

🧪
Phase 4: Validation Planning

"Test different constraint levels with 200+ users per condition to validate patterns"

23/35
Completed Stories

~66%
Rough Rate

Phase 1
Current Status

System Observations (N=35)

Patterns Emerging!
Phase 2: Completion rate and engagement looking consistent across users

Testing Structure Hypothesis
🔍 Week 2: Adding Structure (N=11)

import pandas as pd

class StructureHypothesisTesting:

 def __init__(self):

 self.hypothesis = "Adding structure will improve completion"

 self.previous_result = {"users": 12, "completions": 3}

 def test_structure_addition(self):

 """Week 2: Test if adding 'adventure' guidance helps"""

 structured_prompt = {

 'template': "Write a magical story about a unicorn who goes on an a

 'users_tested': 11,

 'completion_count': 8,

 'completion_rate': 8/11, # ~73%

 'avg_session_time': 15, # minutes

 'safety_issues': 0

 }

 # Compare to Week 1 baseline

 comparison = {

 'week_1_rate': 3/12, # 25%

 'week_2_rate': 8/11, # 73%

 'improvement': (8/11) / (3/12) - 1, # ~192% improvement

 # ... more analysis details

 }

 return structured_prompt, comparison

Initialize structure testing

structure_test = StructureHypothesisTesting()

results = structure_test.test_structure_addition()

print("Week 2: Structure hypothesis gaining support")

Week 2: 8/11 users finished vs 3/12 in Week 1. Structure hypothesis gaining support, but still tiny sample.

Phase 1: Initial Deployment ✓ - 35 users

Current system with scaffolded prompts: "You're helping a curious child create a magical
story! Write about a unicorn who discovers something unexpected..."

Early
Observations

0
Issues

Good
Engagement

📊

📈
Phase 2: Pattern Recognition 🔍

Same system, watching user behavior patterns develop over continued usage

23/35
Total Finished

0
Issues

~18min
Avg Time

🔬
Phase 3: Hypothesis Formation

"Users seem engaged with current constraint level. Maybe we found a sweet spot?"

🧪
Phase 4: Validation Planning

"Test different constraint levels with proper experimental controls"

23/35
Total Completions

~66%
Completion Rate

Phase 2
Current Status

System Observations (N=35)

Hypothesis Formed! 🎯
Phase 3: Current system shows stable 66% completion rate across users

Hypothesis Formation Process
🎯 Hypothesis Formation Process (N=35)

import pandas as pd

class HypothesisFormation:

 def __init__(self, observed_data):

 self.df = pd.DataFrame(observed_data)

 self.patterns_identified = []

 def analyze_constraint_effectiveness(self):

 """Analyze how current constraint level affects performance"""

 current_performance = {

 'completion_rate': self.df['story_completed'].mean(), # 23/35 = 66

 'engagement_rate': (self.df['edit_count'] > 0).mean(), # 28/35 = 8

 'safety_maintained': True, # 0 incidents

 # ... more metrics

 }

 return current_performance

 def form_constraint_hypothesis(self):

 """Generate testable hypothesis from observations"""

 hypothesis = {

 'insight': "Maybe constraints enhance rather than limit creativity?

 'research_question': "Is there an optimal constraint zone?"

 }

 return hypothesis

Form hypothesis from observed patterns

formation = HypothesisFormation(session_data)

performance = formation.analyze_constraint_effectiveness()

hypothesis = formation.form_constraint_hypothesis()

print(f"Hypothesis: {hypothesis['insight']}")

Phase 3: Analysis of 35 users leads to constraint paradox hypothesis - moderate constraints may enhance
creativity.

Phase 1: Initial Deployment ✓ - 35 users

Current system with scaffolded prompts: "You're helping a curious child create a magical
story! Write about a unicorn who discovers something unexpected..."

Early
Observations

0
Issues

Good
Engagement

📊

Phase 2: Pattern Recognition ✓

Same system, watching user behavior patterns develop over continued usage

23/35
Total Finished

0
Issues

~18min
Avg Time

📈

🎯
Phase 3: Hypothesis Formation ✨

Continued observation of same scaffolded system. Strong pattern emerging: users
consistently engage and complete stories. Constraint paradox hypothesis forming.

23/35
Final Count

0
Issues

~66%
Rate

🧪
Phase 4: Validation Planning

"Test if different constraint levels would perform better/worse than current system"

23/35
Total Completions

~66%
Consistent Rate

Phase 3
Current Status

Next Steps: Testing Constraint Hypothesis

Hypothesis Ready for Testing! 🚀
Current system performance suggests constraint optimization worth investigating

Research Roadmap
🚀 A/B Testing Design for Constraint Validation

import pandas as pd

class ConstraintValidationStudy:

 def __init__(self):

 self.target_sample = 600

 self.conditions = ['minimal', 'current', 'heavy']

 def setup_ab_test(self):

 """Set up A/B testing for constraint validation"""

 conditions = {

 'minimal': "Write a story about a unicorn.",

 'current': """You're helping a curious child create a magical story

 Write about a unicorn who discovers something unexpected...""",

 # ... more conditions

 }

 return {'conditions': conditions, 'sample_per_group': 200}

 def initialize_study(self):

 """Create A/B test database"""

 columns = ['user_id', 'condition', 'completed', 'time_spent']

 study_df = pd.DataFrame(columns=columns)

 # ... more setup

 return study_df

Initialize A/B testing study

study = ConstraintValidationStudy()

df = study.initialize_study()

print("Ready to test constraint hypothesis with 600 users")

Phase 4 design: Rigorous A/B testing protocol to validate constraint hypothesis. 600 users across 3 conditions
over 6 months to test if moderate constraints truly optimize creative performance.

Phase 1: Initial Deployment ✓ - 35 users

Scaffolded prompts: "You're helping a curious child create a magical story! Write about a
unicorn who discovers something unexpected..."

Early
Observations

0
Issues

Good
Engagement

📊

Phase 2: Pattern Recognition ✓

Same system, observing consistent user behavior patterns and engagement

23/35
Completed

0
Issues

~18min
Avg Time

📈

Phase 3: Hypothesis Formation ✓

"Current constraint level (~60-70%) seems effective. Is there an optimal zone? Would more
or less structure help or hurt?"

🔬

🧪
Phase 4: A/B Testing Validation

Test minimal vs. current vs. heavy constraints with 200+ users per condition. Measure
completion, engagement, satisfaction.

600+
Users Needed

3
Conditions

6mo
Timeline

66%
Current Baseline

600+
Users for A/B Test

Phase 4
Next Step

The Constraint Paradox - Hypothesis
Formation

Current system vs. hypothetical alternatives:

Minimal Constraints (0%)
Hypothesis: Raw AI generation

"The Mad Hatter screamed, throwing
teacups that shattered and cut people..."
(Untested)

Light Constraints (25%)
Hypothesis: Basic safety filters

"Alice had tea. It was nice. The end."
(Untested)

Heavy Constraints (100%)
Hypothesis: Over-moderated

"Alice walked nicely. Everyone was happy.
The end." (Untested)

Hypothesis Formation from Current System
🔬 From Research Insight to System Vision

class ConstraintParadoxDiscovery:

 def __init__(self, research_data):

 self.user_data = research_data # Our 35 users

 self.hypothesis_formed = False

 def analyze_research_findings(self):

 """How our observational study led to the constraint paradox insight

 # What our research revealed

 key_findings = {

 'completion_rate': 23/35, # 66% with current system

 'current_constraint_estimate': 0.65, # Moderate constraints

 'user_engagement': 28/35, # Most users actively worked

 'safety_maintained': True, # Zero incidents

 'consistent_performance': True # Stable across users

 }

 # The insight that emerged

 paradox_realization = {

 'traditional_assumption': "Constraints limit creativity",

 'our_observation': "Moderate constraints (65%) = strong performa

 'paradigm_shift': "Constraints might ENHANCE creativity rather t

 'hypothesis_formed': "There exists an optimal constraint zone"

 }

 self.hypothesis_formed = True

 return key_findings, paradox_realization

 def estimate_constraint_sweet_spot(self):

 """Based on research, where might the optimal zone be?"""

 # Our current system analysis

 current_system = {

 'constraint_level': 0.65,

 'performance': 0.66,

 'user satisfaction': 'high',

Hypothesized Performance vs Constraint Level (Based on N=35
Observations)

Current System Zone?

Constraint Level (%)

C
re

at
iv

e
P

er
fo

rm
an

ce

0 25 50 65 100

Hypothesis Based on Single System

Our System (23/35)

Minimal? (untested)

Light? (untested)

Heavy? (untested)

Current System (~65%)
35 users: Smart scaffolding

"Alice discovered the Mad Hatter's teacups
sang different melodies, teaching her that
every voice adds harmony to friendship."
(23/35 completed)

The Journey Forward
Three principles guiding us toward our ultimate goal

The Original Challenge

Pick Any Two

Our Progress So Far

Making Progress

🚀
The Journey Continues

Our destination: achieving all three in perfect harmony

Our Ultimate Goal

Perfect Harmony

⚠️

CREATIVITY
vs

SAFETY
vs

SCALE
vs

→ 📍

CREATIVITY
improving

SAFETY
strengthening

SCALE
growing

🏆

CREATIVITY
unleashed

SAFETY
guaranteed

SCALE
unlimited

A framework we're exploring for building AI that works with humans

🎨

Alignment as Product Design

We're exploring alignment as user experience

design with safety constraints. The best

solutions might emerge when we design for

human needs first.

"How do users actually interact with this?
What behavior signals tell us it's working?"

📊

Behavior Over Preferences

Users show us what works through their

actions, not their words. Behavior signals—

completion rates, engagement patterns,

usage flows—may tell us more than surveys.

"Children vote with their attention. Completion
rates matter more than survey responses."

⚖️

Constraints Enable Creativity

We're testing whether the right guardrails can

guide expression toward more meaningful

outcomes rather than limiting it. Structure

might become the foundation for innovation.

"60-70% constraint level = peak creativity.
Structure channels imagination productively."

Thank You
Questions? Let's discuss the journey ahead

🚀 📊 🎨

Vijay Chakilam
Founder, Hello Kooper

@thankrandomness linkedin.com/in/vijaychakilam

This research represents early findings from our AI storytelling platform.

We're excited to continue exploring how constraints can enable creativity at scale.

https://github.com/thankrandomness
https://linkedin.com/in/vijaychakilam

